Quest Chapter 05

#	Drahlam	Lint
#	Problem	Hint
1	(part 1 of 3)	Is the car is in equilibrium?
	You are driving a car down a straight road at	
	a constant 54 miles per hour.	Where will the forces act?
	Consider the following forces:	Where will the forces act?
	I) air drag pushing back on the car;	
	II) gravity pulling down on the car; III) the ground pushing up on the car;	Draw a diagram and label
	IV) friction pushing the wheels (and the car)	the forces.
	forward; and	
	V) friction pushing the wheels (and the car) back.	
	Which force(s) act on the car?	
	1. I and II	
	2. I, II and III	
	3. II, III and IV	
	4. I, III and V	
	5. I, II, III and IV	
2	(part 2 of 3)	What are the conditions of
	Is there a net or unbalanced force acting on	car in problem 2?
	the car?	
	1. No; the speed is constant.	
	2. Yes; a net force in the vertical direction.	Check the definition of
	3. Yes; a net force in the horizontal direction.	net/unbalanced forces. Then
	4. Cannot be determined	choose carefully.
3	5. No; the velocity is constant. (part 3 of 3)	2
5	After a while, the car started to go around a	What happens when the car
	long bend, still maintaining its constant speed	turns?
	of 55 miles per hour.	
	Is there a net (unbalanced) force acting on	What is changing?
	the car?	What is changing:
	1. No; the velocity of the car does not	
	change.	Is equilibrium maintained?
	2. Yes; its direction is not the same as the	
	velocity.	
	3. Cannot be determined	
	4. Yes; its direction is the same as the velocity.	
	5. No; the speed of the car does not change.	
4	Two 30 N forces and a 60 N force act on a	Analyze the FBD (free body
	hanging box as shown.	diagram).
	Will the box experience acceleration?	
	 No; it is balanced. Yes; upward. 	Will the company of the
	3. Unable to determine without the angle.	Will the components of the
	4. Yes; downward.	30N forces balance the
		other force?
	l	

#	Problem	Hint
5	An astronaut tosses a rock on the moon. What force(s) act on the the rock during its curved path? 1. air push	Where is the rock being thrown?
	 All are wrong. gravitation force air drag 	Is there gravity there?
	5. friction force	Draw the FBD and label the forces.
6	What force pushes up on you when you jump vertically off the ground? 1. The ground pushes up on you. 2. The force of air drag	Draw a FBD for you in this problem.
	 The force of gravitation Your feet push up on your body. All are wrong. 	Before you jump, are you in equilibrium?
		What direction must a force be applied to you if you jump vertically?
		What must do the pushing?
7	Consider a girl standing in an elevator that is accelerating upward. The upward normal force N exerted by the elevator on the girl is 1. identical to 2. larger than	Draw the FBD. Is she in equilibrium?
	3. smaller than the downward weight W of the girl.	What is the direction of the acceleration?
		Which force vector should be bigger?
8	Consider a person of weight W standing in an elevator that is accelerating downward. An upward force N is exerted by the elevator floor on the person.	Draw the FBD. Is the person in equilibrium?
	The relationship between N and W is 1. N < W. 2. N > W. 3. N = W.	What is the direction of the acceleration?
	4. More information is needed.	Which force vector should be bigger?

#	Problem	Hint
9	Which one of the follow expressions is one of Newton's Law? 1. F = ma	Did you take notes?
	2. F = mb	
	3. F = my 4. F = mz	
	5. F = mc 6. F = mx	
10	Two identical spring-loaded dart guns are simultaneously fired straight forward. One fires a regular dart; the other a weighted dart. Which dart goes farther?	Assume the forces on the darts are equal.
	 The weighted dart. The regular dart. 	Use the Second Law.
	3. It's a tie.	How will the difference in the masses affect the acceleration of the darts?
		How will that affect the distance?
11	Five 20 N forces act on a 2 kg object as shown. What is the acceleration of the object?	Look at the FBD in the problem.
		Do any of the forces cancel each other?
		What remains?
		Use the Second Law to
10		determine the acceleration.
12	What is the acceleration of a 66 kg block of cement when pulled sideways with a net force of 586 N?	Use the Second Law.
		Substitute and solve.
13	If a mass of 1 kg is accelerated 1 m/s ² by a force of 1 N, what would be the acceleration of a 32 kg mass acted on by a force of 32 N?	Use the Second Law.
		Substitute and solve.

#	Problem	Hint
14	Before going into orbit, an astronaut has a mass of 55 kg. When in orbit, a measurement determines that a force of 73.7 N causes her to move with an acceleration of 1.1 m/s ² . To regain her original weight, should she go on a diet or start eating more candy? To answer this, find her mass in orbit.	Don't be fooled. You may determine whether or not she should lose/gain weight, but you are asked to find her mass in orbit.
		Use the Second Law.
		Substitute and solve.
15	The net external force on the propeller of a 3.8 kg model airplane is 8.5 N forward. What is the acceleration of the airplane?	Use the Second Law.
		Substitute and solve.
16	A soccer ball kicked with a force of 12.6 N accelerates at 7.5 m/s ² to the right. What is the mass of the ball?	Use the Second Law.
		Substitute and solve.
17	What net external force is required to give a 32 kg suitcase an acceleration of 3.8 m/s ² to the right?	Use the Second Law.
		Substitute and solve.
18	The net external force on a golf cart is 404.5 N north.	Use the Second Law.
	If the cart has a total mass of 286.9 kg, what is the cart's acceleration?	Substitute and solve.
19	What is the greatest acceleration a runner can muster if the friction between her shoes and the pavement is 57% her weight? Assume the acceleration of gravity is 10 m/s ² .	Remember: Friction is a function of the normal force between two objects.
		In this case, that would be her weight.

#	Problem	Hint
20	A bungee jumper feels weightless as she falls toward the Earth.	Draw the FBD.
	What accounts for her weightless feeling when she fall freely?1. The platform is too high.2. The weightless feeling is because of the	How does someone "feel" weight?
	lack of a support force that balances gravity.3. The force of gravity disappears when she has jumped off a high platform.4. Her weight becomes less when she has jumped off.	Is that represented in the FBD?
21	The acceleration of gravity is 10 m/s ² . What will be the acceleration of a skydiver when air resistance builds up to 94% of her weight? Assume the acceleration of gravity is 10 m/s ² .	What does it mean to say that air resistance builds up to a certain percentage of weight?
		Where would that appear in a FBD?
		If you want to use the Second Law, assume a mass of 1kg.
22	A box weighing 690 N is pushed along a horizontal floor at constant velocity with a force of 260 N parallel to the floor. What is the coefficient of kinetic friction	How does constant velocity affect this problem?
	between the box and the floor?	Draw the FBD.
		What is the equation that defines of the coefficient of kinetic friction?
		Substitute into the equation and solve.

#	Problem	Hint
23	A crate is pushed horizontally with a force. The acceleration of gravity is 9.8 m/s ² . Calculate the acceleration of the crate. Answer in units of m/s ²	Use the definition of the coefficient of kinetic friction to find the friction force that resists motion.
		Find the net force.
		Use the Second Law of Motion to determine the acceleration.
24	(part 1 of 2) A dock worker loading crates on a ship finds that a 23 kg crate, initially at rest on a horizontal surface, requires a 81 N horizontal force to set it in motion. However, after the crate is in motion, a horizontal force of 58 N is required to keep it moving with a constant speed.	Find the weight of the crate. What is the equation that defines the coefficient of static friction?
	The acceleration of gravity is 9.8 m/s ² . Find the coefficient of static friction between crate and floor.	Substitute and solve.
25	(part 2 of 2) Find the coefficient of kinetic friction.	Use the definition of coefficient of kinetic friction and repeat.
26	(part 1 of 2) Hint: Convert centimeters to meters before doing the calculation! A 0.69 kg physics book with dimensions of	What do we call the force the book applies to the table?
	32 cm by 17.4 cm is on a table. What force does the book apply to the table? The acceleration of gravity is 9.8 m/s ² . Answer in units of N	What do you need to calculate that value?
27	(part 2 of 2) What pressure does the book apply? Answer in units of Pa	What equation defines pressure?
		Substitute and solve.

#	Problem	Hint
28	Hint: Convert centimeters to meters before doing the calculation! A 25.8 kg woman balances on one heel of a pair of high-heeled shoes.	What equation defines pressure?
	If the heel is circular with radius 0.338 cm, what pressure does she exert on the floor? The acceleration of gravity is 9.8 m/s ² . Answer in units of N/m ²	What do you need to substitute and solve?
		How do you find the area of the heel? ($A_{circle} = \pi r^2$)
29	(part 1 of 2) Vector A has x and y components of -20 cm and 3.2 cm, respectively; vector B has x and y components of 2.29 cm and -20 cm, respectively. If A-B +3C = 0, what is the x component of C ? Answer in units of cm	Can you keep your x's and your y's clear?
30	(part 2 of 2) What is the y component of C ? Answer in units of cm	Can you keep your x's and your y's clear?
31	Suppose I throw a ball straight up in the air with initial velocity vo. At the ball's highest point, which is true? 1. $a =/= 0$, $v = 0$ 2. $a =/= 0$, $v =/= 0$ 3. $a = 0$, $v = 0$ 4. $a = 0$, $v =/= 0$	Note: =/= means "not equal" Highest point? Top of curve? Apex? Zenith?

#	Problem	Hint
32	 (part 1 of 2) The speed of an arrow fired from a compound bow is about 15 m/s. An archer sits astride his horse and launches an arrow into the air, elevating the bow at an angle of 51∘ above the horizontal and 3 m above the ground. The acceleration of gravity is 9.81 m/s². What is the arrow's range? Assume: The ground is level. Ignore air resistance. 	Projectile Motion? Use Mother and, if needed, Grandmother. Remember: a _g should be negative.
33	Answer in units of m (part 2 of 2) What is the height of the projectile? Answer in units of m	Height of the Projectile? (Highest point? Top of curve? Apex? Zenith?) At what time is the projectile at his maximum height? Remember, you found total time in part 1. Isn't this a hang-time type of