Quest Chapter 03

#	Problem	Hint
1	Which of acceleration, age, speed, temperature, and velocity are vector quantities? 1. Speed and temperature	What are the two properties of any vector?
	 Acceleration, speed, temperature Acceleration, age, speed Age and temperature Acceleterion, speed, velocity Acceleration and velocity All are vectors. Age, speed, temperature 	Which of the five things have both of those properties?
	9. All are scalars.10. Acceleration, age, speed, temperature	
2	When two vectors sum to zero, how must they be related? 1. All are wrong. 2. The magnitudes are different; the directions	What does "sum to zero" mean?
	are the same.3. The magnitudes are different; the directions are opposite.4. The magnitudes are the same; the directions are opposite.	So, what must be the same, and what must be different?
3	5. Both magnitude and direction are the same. Part 1 of 2 A cat climbs 20 m directly up a tree.	What does "directly" mean?
	a) What is the horizontal component of the cat's displacement?	How much of that is vertical?
		How much is horizontal?
4	Part 2 of 2 b)What is the vertical component of the cat's displacement?	Use the previous hint.
5	Vectors A and B are shown in the figure below. For convenience, the tails of each vector are arbitrarily located at (0,0).	How do you add vectors?
	Select the figure showing the resultant vector \mathbf{R} , where $\mathbf{R} = \mathbf{A} + \mathbf{B}$.	Make sure to draw the parallelogram carefully.

#	Problem	Hint
6	A heavy crate accidentally falls from a highflying airplane just as it flies directly above a shiny red Camaro parked in a parking lot. Relative to the Camaro, where will the crate	Compare the motion of the plane and the car.
	crash? 1. The crate will hit the Camaro. 2. The crate will hit the front part of the car. 3. The crate will continue to fly and will not	Draw a diagram of the problem.
	crash. 4. The crate will not hit the Camaro, but will crash a distance beyond it determined by the height and speed of the plane.	Based on your diagram, where will the crate crash?
7	If you are standing in a bus that moves at constant velocity and drop a ball from your outstretched hand, you will see its path as a vertical straight line.	This is an F _{rame} O _f R _{eference} problem.
	How will the path appear to a friend standing at the side of the road? 1. The path curves downward. 2. The path curves upward. 3. The path is a straight line orientated vertically. 4. The path is a straight line slanted down.	Draw a diagram of the problem from the perspective of the friend.
8	A bowling ball accidentally falls out of the cargo bay of an airliner as it flies along in a horizontal direction. As observed by a person standing on the ground and viewing the plane as in the figure,	First, what will be the general shape of the path? Eliminate obviously wrong answers.
	which path would the bowling ball most closely follow after leaving the airplane? 1. Z 2. U 3. X	Which of the ones left just curve too much? Eliminate them.
	4. W 5. V 6. Y	What's left?
9	How does the vertical component of a projectile's motion compare with the motion of vertical free fall when air resistance is negligible? 1. Identical to that of free fall	What does free fall have to do with the vertical component of a projectile?
	2. Less than that of free fall 3. It cannot be determined. 4. Greater than that of free fall	What affects them?

#	Problem	Hint
10	The velocity of a projectile at launch has a horizontal component v _h and a vertical component v _v . Note: Air resistance is negligible.	Draw a diagram of the problem.
	When the projectile is at the highest point of its trajectory, which of the following show the vertical and the horizontal components of	Label the components for velocity and acceleration.
	its velocity and the vertical component of its acceleration in 3 columns? Vertical Horizontal Vertical Velocity Velocity Acceleration 1. 0 0 g	Which answer choice agrees with your analysis?
11	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
11	Given: The battleship and enemy ships A and B lie along a straight line. Neglect air friction. A battleship simultaneously fires two shells	Muzzle velocity = v_0 .
	(with the same muzzle velocity) at these two enemy ships. If the shells follow the parabolic trajectories shown in the figure, which ship gets hit first? 1. need more information	Which component of v_0 affects the time the projectile is in the air?
	2. B 3. both at the same time 4. A	Which will hit first?
12	A person tosses a ball from the ground up into the air at an initial speed of 10 m/sec and an initial angle of 43° off the ground. After the ball is released, what is the total	What acts on the ball that will change its velocity?
	acceleration vector acting on the ball when the ball is at the top of its arc?	What is its size?
	 9.8 m/s², in the horizontal direction 9.8 m/s², down None of these zero 9.8 m/s², up 	Is it a vector? If so, what else do you need to specify?
13	At what point in its trajectory does a batted baseball have its minimum speed? 1. at the beginning point 2. at the end point	In two-dimensional motion, how do we determine speed?
	3. somewhere at the middle height 4. at the top	Is there anyplace where one of those components goes to zero?

#	Problem	Hint
14	When a rifle fires at a distant target, where should the barrel be pointing? 1. above the target 2. directly at the target 3. below the target	What happens to a projectile the moment it leaves the barrel of the gun?
	4. diagonally from the target5. to the right of the target6. to the left of the target	How would the marksmen adjust for that?
15	Someone in a car going past you at the speed of 47 m/s drops a small rock from a height of 2.1 m.	Draw a diagram and separate the components.
	How far from the point of the drop will the rock hit the ground? The acceleration due to gravity is 9.8 m/s ² .	What are you asked to find: vertical or horizontal distance?
		You will need to use the distance equation twice. The first time to find the time to hit the ground, and the second time to find the distance travelled.
16	Part 1 of 2 A long jumper leaves the ground at an angle of 24 ⁰ to the horizontal and at a speed of 10.7 m/s.	Once he jumps, this becomes a projectile motion problem.
	How far does he jump? The acceleration due to gravity is 9.8 m/s². Answer in units of m	Follow the sample problems we did in class.
17	Part 2 of 2 What maximum height does he reach? Answer in units of m.	Hang time problem.
	Answer in units of m.	What do we do with the time from the previous problem?